
Dynamics of perfectly wetting drops under gravity

Ryan P. Haskett1 and Shomeek Mukhopadhyay2

1Department of Mathematics, Duke University, Durham, North Carolina 27708, USA
2Department of Physics, Duke University, Durham, North Carolina 27708, USA

�Received 12 December 2006; published 10 August 2007�

We study the dynamics of small droplets of polydimethylsiloxane silicone oil on a vertical, perfectly wetting,
silicon wafer. Interference videomicroscopy allows us to capture the dynamics of these droplets. We use
droplets with a volumes typically ranging from 100 to 500 nl �viscosities from 10 to 1000 cSt� to understand
long time derivations from classical solutions. Past researchers used one dimensional theory to understand the
typical t1/3 scaling for the position of the tip of the droplet in time t. We observe this regime in experiment for
intermediate times and discover a two-dimensional similarity solution of the shape of the droplet. However, at
long times our droplets start to move more slowly down the plane than the t1/3 scaling suggests and we observe
deviations in droplet shape from the similarity solution. We match experimental data with simulations to show
these deviations are consistent with retarded van der Waals forcing which should become significant at the
small heights observed.
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I. INTRODUCTION

The motion of a liquid drop falling due to gravity on a
vertical solid substrate is a classic problem in fluid dynamics
�1,2�. The movement of the fluid front depends on a balance
between viscous and surface tension forces with gravity pro-
viding the body force. In the case of extremely small drop-
lets, it is expected that in the late stages of spreading when
the drop thins appreciably, subtle interplay between van der
Waals and surface tension forces may become important. A
detailed study of droplets is also technologically important in
applications where the dynamics of droplets with solid sub-
strates is used, e.g., in microfluidic devices and inkjet print-
ing of organic electronic circuits �3�.

When a uniform fluid layer �line source� flows under
gravity, the advancing contact line develops a fingering in-
stability which has been the subject of intense study �4–9�. In
the case where surface tension can be neglected, the contact
line shows a typical scaling relationship with time which was
analyzed by Huppert �1� for arbitrary angles of inclination.
Since the flow of liquids is technologically important for
various coating processes, a through analysis of gravity
driven flow for point and line sources �with zero surface
tension� was done by Lister �7�. Recently Gonzalez et al. �8�
extended this study to the case of a finite volume fluid strips
falling under the action of gravity. Their careful numerical
and experimental work showed deviations from Huppert’s
similarity solutions due to surface tension effects. These ef-
fects lead to the formation of a capillary ridge in the front
before the onset of the fingering instability. Furthermore,
Gonzalez et al. predict the wavelength of the fingering insta-
bility, noting it can be controlled by the surface tension. The
shape of the profile has been investigated in detail by Hock-
ing �9�, where he identifies three distinct regimes of the fluid
sheet before the onset of the instability.

Depending on the wetting properties of the substrate, the
dynamics of finite volume droplets under the combined ef-
fects of surface tension and gravity can give rise to a number
of interesting shapes �10,11�. The capillary number is the

main parameter controlling the morphological shape transi-
tions and dynamics, in contrast to the constant flux flow of a
liquid. For droplets with a finite contact angle, one can have
corners, cusps or pearl-like droplets depending on the capil-
lary number. The corner formation in cusplike shapes have
been linked to the existence of conical similarity solutions in
the lubrication equation �12�, while recent numerical work
predicts the existence of chaotic shedding states �13�.

In the present work, we concentrate on completely wet-
ting substrate, where the contact angle goes to zero. This
allows us to make detailed comparison between theory, nu-
merical simulations and experiments, without using a priori
contact angle versus disjoining pressure relationship �14�.
We capture the intermediate-time dynamics by a two-
dimensional constant volume analysis of the lubrication
equation which includes gravity and surface tension. Only in
the long time limit do the effects of the intermolecular forces
become important. Careful numerical study of these droplets
and qualitative comparison with experiments allows us to
understand the importance of disjoining pressure in the dy-
namics �15�. We use a precursor film in the numerical simu-
lations �16� and only the long-time dynamics is sensitive to
precursor height values. A comprehensive study of droplets
under the completely wetting scenario can reveal how modi-
fications to the disjoining potential have to be made for par-
tially wetting surfaces. It also brings out the important simi-
larities and differences between a constant volume drop and
a single finger formed by the instability of the contact line.
Recent work on partially wetting substrates has shown the
importance of taking these van der Waals forces into account
for very small drops �17�.

In the next section, we give a detailed outline of the con-
stant volume problem, along with the experimental setup
used to investigate the problem. We will also show typical
experimental results and how the initial circular shape of the
drop changes from a circular plane form to a form with a
regular scaling law and then finally to a nearly elliptical
plane form. In Sec. III, we undertake a detailed theoretical
analysis of the two-dimensional lubrication approximation
for drops with constant volume. The numerical results are
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compared to experimental data for position versus time, lon-
gitudinal and transverse shape of the drop at intermediate
times. In Sec. IV, we present numerical results with van der
Waals forcing and compare them with experimental results
when the dynamics of the front shows strong deviations from
t1/3 scaling law at very long times.

II. OUTLINE OF THE CONSTANT VOLUME DROPLET
PROBLEM

We use polydimethylsiloxane �PDMS� silicone oil as our
working fluid on a pretreated silicone wafer. The oxidized
silicon wafer is first wetted with the silicone oil �density
0.986 g/cc and surface tension 20.9 dyne/cm�, then rinsed
thoroughly with hexane and finally cleaned with a methanol
wetted tissue �18�. This covers the substrate with a precursor
film of PDMS which is consistently a single monolayer
thick. The PDMS �United Chemical Technologies� oils used
had viscosities ranging from 1.5 to 1000 cSt. Since the time
scale for the various effects are controlled mainly by the
viscosity, changing the viscosity allows one to follow the
change of shape from a circular to an elliptic cross section.
For modeling purposes we restrict ourselves from
50 to 1000 cSt. At 10 cSt or below volatility distorts the
contact line and above 1000 cSt polymer entanglement ef-

fects come into play. The volume of the drop was varied
from around 100 nl to a few ml by using a micropippette
�Biohit Proline Micropippetors�.

The droplet was placed on the surface of a silicon wafer
�which was mounted on a vertical plane� and was illuminated
by a collimated He-Ne laser beam �wavelength 632.8 nm� as
shown in Fig. 1. The rays reflected from the top surface of
the oil drop and the surface of the wafer gave a typical in-
terference pattern as shown in Fig. 2. The position and shape
of the front as well as the fringes can be followed as a func-
tion of time. It should be noted that most of the analysis will
be concerned with the main body of the drop. Surface ten-
sion effects create a capillary ridge at the tip of the drop. The
back of the droplet moves extremely slowly on time scales
compared to the front of the drop.

From the images �Fig. 2� three main sections of the drop
can be distinguished, a dark front which comprises the cap-
illary ridge, the main body of the drop where most of the
interference fringes can be seen and the rear section of the
drop which moves extremely slowly on the intermediate and
long time scales. In addition to following the front of the
drop, the interference fringes �Fig. 2� will allow us to draw
some qualitative conclusions regarding the surface profile,
which can be compared with numerical simulations and
theory.

We note that the height of the fluid is much smaller than
the extent of fluid in the plane, and the slope of the free
surface is small except near the capillary tip. Hence we can
use the lubrication approximation for analyzing the motion
of the bulk of the fluid. It is also well known that if the Bond
number B=�gW2 /�, where W is a typical transverse length
scale, is much greater than 1, then the effects of surface
tension and contact line motion can be neglected. Depending
on the the viscosity and surface tension our typical Bond
numbers are around B�0.2–0.8. Hence we are in the regime
which is complementary to those analyzed by Huppert and
Lister �1,7�. In the case of a droplet on a partially wetting
substrate a function of the Bond number also appears as a
control parameter which determines the transition between
shedding and nonshedding states �13�. The capillary lengths
for our PDMS oils are around �� /�g�1–2 mm, where � is
the surface tension and � is the density of the drop. Assum-
ing a hemispherical drop of volume around 0.2–0.5 ml, the
initial radius about the same scale as the capillary length. We
choose the free scaling parameter, the height scale, to be this
value.

When the drop is initially put on the substrate, high cur-
vature at the contact line pushes the fluid radially outwards.
Depending on the viscosity of the drop the circular plan form
maintains itself until the gravitational forces overcomes in-
ertial and capillary effects. If the initial radius of the drop is
R and the typical length scale in the downslope direction is

FIG. 1. Schematic of the experimental setup where rays re-
flected from the top and bottom of the drop �inset� creates the in-
terference pattern.

FIG. 2. Close up of interfer-
ence fringes from PDMS oil drop-
let of viscosity 100 cSt and vol-
ume 0.85 ml. Note the capillary
ridge at the leading edge.
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given by L, then the surface tension driven spreading, which
is dependent on the curvature � is given by ��R /L2. As was
shown in recent experiments of Biance et al. �19�, in the
inertial-capillary regime the length should scale as ��Dt,
where the dynamic diffusion coefficient is given by D
=��R /�. We do not observe any �t kind of dependence in
the time scales when we start taking the first measurements
�1–2 s�. This is borne out by the fact that the dimensionless
Ohnesorge number Oh=� /���R, which distinguishes be-
tween the inertial and the viscous regime �20�, is around 1
for the viscosities � in our experiments.

In Fig. 3, we show typical examples from the three main
regimes we see in the experiments. Initially, the surface ten-
sion forces dominate and we have an nearly circular drop. In
the case of a purely gravitationally driven flow, neglecting
the effect of surface tension the initial axisymmetric spread-
ing was found to be proportional to t1/2 by Lister �7� and
gave away to predominantly down-slope flow when t
�O�1�.

In the second regime we see a very regular motion where
both gravity and surface tension have to be taken into ac-
count. The transients typically die out in the time scale ���.
Looking at the position of the tip as it varies in time, we see
t1/3 scaling law relationship �Fig. 6� for the intermediate
times. Huppert �1� first explained this scaling law using one-
dimensional theory without surface tension. We extend this
theory to two dimensions and use asymptotics to allow a
detailed understanding of the transverse features of the drop-
let.

At very long times, we start to see deviations from the
intermediate-time scaling laws. The motion of the tip slows
down significantly, and the droplet starts to spread laterally at
an increasing rate. We note through other works �11,17� that

at very small height ranges near the end of our runs, van der
Waals forces should start to become important. Looking at
the effects of these forces in our numerics we can see the
same shape changes as we see in the experiments. In particu-
lar, we can match the deviation in tip position from the t1/3

scaling law in experiment and simulations. From this evi-
dence we conclude that van der Waals forces are the cause of
long-time deviations from the classical solutions seen at in-
termediate times.

III. FORMULATION

We study the gravity-driven lubrication flow of a small
droplet of Newtonian fluid on a vertical solid flat plate. The
finite-mass droplet has a constant density �, viscosity �, and
surface tension �, and the flow is driven by gravitational
stresses and interacts with the fully wetting surface. We de-
fine a coordinate system with the x coordinate in the direc-
tion of gravity and the z direction normal to the plate, as
shown in Fig. 4. The y direction is transverse to the direction
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FIG. 3. Numerical simulation for the three regimes of droplet motion. The first panel is for the initial transients. The second set
corresponds to the important asymptotic regime where the gravitational effects are balanced by inertial and surface tension effects. Finally,
as the height scale of the drop becomes much smaller we enter a third regime where Van der Waals forces become important �see Sec. III
for detailed explanation of numerics�. All the numerical heights are in dimensionless units �see Sec. III for the nondimensionalization�.

FIG. 4. Geometry of the problem.
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of flow and completes the right-handed coordinate system.
We denote the height of the free surface of the flow as z
=h�x ,y , t�.

We shall now briefly review the derivation of the lubrica-
tion model including long range molecular forces �21�. We
rescale the dimensional �hatted� lengths, time, velocity, and
pressure to yield corresponding dimensionless quantities

x̂ = Lx, ŷ = Ly, ẑ = Hz, t̂ =
L

U
t ,

û = Uu, v̂ = Uv, ŵ =
HU

L
w, p̂ =

�UL

H2 p .

and use these rescalings on the the Navier-Stokes equations
for the viscous, incompressible flow where the modified

pressure P̄ directly incorporates the hydrostatic pressure and
the van der Waals molecular interactions

P̄ = p + xSt−1 + Ha��h� . �1�

The dimensionless parameters present are the aspect ratio,
the Stokes and Hamaker constants as well as the reduced
capillary number

� =
H

L
, St−1 =

�gH2T

�L
, Ha =

A�T

6	�H2L2 , Ca =
�−3�U



,

where g is the acceleration due to gravity and A� is the di-
mensional Hamaker constant.

At z=0, the no-slip boundary conditions u=w=0 are ap-
plied. At the free surface z=h�x , t� the boundary conditions
are the kinematic stress balance condition, the normal stress
balance, and the tangential stress balance. We follow the
derivation in Oron, Davis, and Bankoff �21� integrating the
Navier-Stokes equations to find the depth averaged velocity
and then using the kinetic boundary condition to produce a
partial differential equation for the height

ht +
St−1

3
�h3�x = Ha � �h3 � ��h�� −

Ca−1

3
� �h3 � �2h� ,

�2�

where �= � �
�x , �

�y
� is the gradient on the plane.

Despite the relatively small constant in front of the van
der Waals term in Eq. �2�, we must keep this term to under-
stand the longtime dynamics, as we will show in Sec. IV. We
will use 1/h4 form for the van der Waals force ��h�, which
comes from the dielectric properties present in the liquid-
solid layered system when the liquid has no ionic species
�22�. We choose to incorporate the aspect ratio into the “re-
tarded van der Waals” interaction term, because the van der
Waals interactions are important near the contact line at the
edge of the droplets. This term then must be included to
correctly model the physics despite the small value of the
“retardation term” in the lubrication limit ��→0�. As the film
thins the “retarded” or long-range part of the van der Waals
interaction becomes important. Casimir and Polder �23� first
showed that in the limit of long distances the interaction
energy for the van der Waals interaction changes from 1/r6

to 1/r7. In order to calculate the disjoining pressure from this

functional form one has to integrate the two parallel domains
using the full Lifshitz theory, which has been done by Der-
jauin et al. �22�. This “functional” form of the van der Waals
interaction comes into effect when the film thickness is
above 10 nm. The retarded van der Waals interaction has
been used in modeling the dynamics of thin tear films in the
eye amongst others �24,25�. For the disjoining pressure of
the form A� /h4, A� has dimensions of erg cm, whereas for
the nonretarded form A� /h3, A� has dimensions of energy
�ergs�.

We now choose our scaling similar to Ref. �26�,

L = ��H

�g
	1/3

, T =
3�L

�gH2 , �3�

which sets all the coefficients in front of the terms in �2� to
unity except for the Van derWaals interaction term

�h

�t
+

�h3

�x
= − A � �h3 �

1

h4	 − ��h3 � �2h� . �4�

We keep the ability to adjust or change the strength of the
van der Waals interactions though the nondimensional pa-
rameter

A =
A�

6	
� 1

��2g2H13	1/3

�5�

so we can understand the effect of the intermolecular forces
on the fluid. Our other major parameter in the problem will
be the volume of the droplet V� which when scaled becomes
V= V�

HL2 . However, for our comparisons between numerics
and experiments we can avoid dealing with this parameter by
setting our free height scale H= L2

V�
, and therefore obtaining a

scaled volume of �1.
One-dimensional numerical calculations were preformed

using standard Crank-Nicolson framework �27�. All two-
dimensional numerical solutions for the governing equation
�4� and the scaled version of this equation we discuss later
�11� uses a midpoint, alternating direction scheme as seen in
Ref. �28�. These methods along with Newton’s iterations for
the nonlinearity, allow for second-order accuracy in time and
space while keeping reasonable execution time.

In all cases, we must estimate the prewetting height of
film used in the experiments as this value is not directly
measurable. This was chosen to be two to three orders of
magnitude less then the smallest heights achieved by the
droplet. Throughout this range we find the same qualitative
results seen in the next sections for scaling powers and drop-
let shapes before the van der Waals forces become important.
As the film height becomes extremely small, however, the
strength of the van der Waals term is affected by the wetting
height. This can be understood by looking at the terms in the
governing equation �4�, and noticing that most of the terms
depend on positive powers of h while the van der Waals has
a negative power of h and therefore is more sensitive to
small changes in h. Prewetting dependence for the quantita-
tive motion of fluid has been hypothesized by many authors
�4,8,21� as explanations for large deviation in proportionality
constants while still having very good fits for scaling powers.
We clarify the cause of these deviations in the Appendix.
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A. One-dimensional solutions without van der Waals forcing

We start the analysis of one dimensional solutions without
van der Waals forcing by taking the governing equation �4�
in one dimension, for solutions that are uniform in the y
direction and with no wetting, i.e., A=0 we obtain the gov-
erning equation

�h

�t
+

�h3

�x
= − �h3hxxx�x. �6�

This equation has been studied extensively for both constant
volume �1,8� and constant flux �7� cases and we will review
the main results here. We verify our results in intermediate
times before van der Waals forces become important using
theoretical results from this equation. Also, we use the scal-
ing laws presented to understand the novel, two-dimensional
asymptotic solution in the next section.

Ignoring the fourth order smoothing for the moment, we
obtain the same equation that Huppert first used �1� to de-
scribe the motion of a droplet

�h

�t
+

�h3

�x
= 0 �7�

with the solution

hA=0�x,t� =� x

3t
�8�

valid from an arbitrarily chosen x=0 to the tip at xtip

= � 3�3
2 VA�2/3

t1/3 determined by conserving the profile area VA.
The solution is zero for x outside this region. The appearance
of a “shock” or “jump”is not too surprising as we have re-
moved the fourth-order smoothing. However, the main effect
of this smoothing is to produce a capillary ridge, which ap-
pears due to the finite surface tension of the fluid, that
smooths out the shock at xtip.

The numerics show the predicted square root scaling �8�
of the profile height �Fig. 5�, which can be compared with
the experimental data from analyzing the spacings in inter-
ference fringes. This shape of the the profile is markedly
different from the profile in the case of gravity driven fingers
from a line source �26�, or in the case of Marangoni driven
fingering �18�. For Marangoni driven fingers or for gravita-
tional fingering from a line source, one has a very flat inter-
mediate section followed by a sharp tip at the end.

The scaling law for the tip position xtip� t1/3 has been seen
throughout the literature for gravitationally driven fluids
�1,4�. In our experiments and numerics in one and two di-
mensions, we see this scaling for intermediate times. In Fig.
6, we show typical experimental results for 50 and 100 cSt
of assorted volumes along with a numerical run with A=0, to
show the regime of t1/3 behavior. The numerical run has, as
expected, a nearly perfect t1/3 scaling, however, we see de-
viations from this scaling in the experiments at long times
which will be attributed to van der Waals forces in later
sections.

B. Two-dimensional solutions without van der Waals forces

In the Appendix, we derive a two-dimensional, long-time,
asymptotic �near the tip�, series solution to our governing
equation �4�

h�x,y,t� =� x

3t
�1 −

y2

w�x,t�2	 + O�y6� , �9�

where w�x , t�=W�1−xt−1/3 /�tip�1/4 is the width of the droplet.
Note, our solution still has two constants that need to be fit W

FIG. 5. A numerical profile h�x ,y=0� fit with Cx1/2 and the
analysis of the interference fringes from a 1000 centistokes run.
Fringe profile is fit to a quadratic function in the intermediate sec-
tion of the drop away from the tip �shown for the first 25 fringes�.

10

100

100 1000 10000 100000

xtip

t

FIG. 6. Nondimensional position versus time �Sec. III� for vis-
cosities of 100 or 50 cSt and volume ranging from 100 nl to 1.0 ml
graphed with a reference numerical solution �solid� for A=0 show-
ing the t1/3 scaling. Squares and diamonds correspond to 50 cSt,
others are 100 cSt. Note the t1/3 scaling in the data at early times
and long time deviations from this scaling in all cases.
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and �tip, due to the lack of a matching asymptotic solution for
the back of the drop �near x=0�. The first constant W con-
trols how quickly the footprint width scales with the distance
from the tip. The second constant �tip, in the physical vari-
ables, becomes the scaling constant for the tip position x
=�tipV

8/15t1/3. Numerically, we have noticed that these con-
stants are quite independent of initial droplet shape as long
as the initial volume is contained within an area that is about
half of the eventual width W. However, as we look at the
experimental values for �tip from Fig. 6 and W from footprint
data in Fig. 8. We find quite a bit of spread in these constants
despite the very close agreement for the scaling. This spread
in the values has been seen in other droplet literature �1,4�
and is discussed in the Appendix. The asymptotic solution is

not valid near the tip of the droplet. The center line height
�y=0� matches the square root scaling discussed earlier in
the one-dimensional theory �8�. Also, if we look for the point
where the width of the drop w�x , t� becomes zero �the tip of
the droplet�, we see clearly the tip scaling xtip� t1/3, as dis-
cussed in the previous section. In addition to matching the
expected one-dimensional theory, we have an explanation for
a number of the transverse features we see in experiment.

We clearly see the inverse parabolic cross-sections pre-
dicted by �9� �for constant x and t� in the numerics as well as
the experiments �Fig. 7�, when data is taken away from the
tips of the droplet. In the Appendix, we show that the O�y4�
term in the series solution must be zero therefore our para-
bolic fits are nearly perfect. Experimentally, these parabolic
cross sections are seen for intermediate times before the van
der Waals term becomes important.

The final important feature we can predict using the
asymptotic solution �9�, is the shape of the footprint of the
droplet �where the height becomes zero�. The theory predicts
a 1 /4th scaling law for the width w of the droplet as a func-
tion of position along the droplet x. Our numerical solutions
for A=0 show the correct 1 /4th scaling in the width of the
droplet in the footprint, estimated here by a contour of height
h=0.05 �Fig. 8�. Note that we see some deviation at the tips
of the droplets. The deviation for x near zero is not surprising
as we derived our solution asymptotically near the tip of the
drop. However, we see that the solution is surprisingly valid
through most of the droplet length which again can probably
be attributed to the zero O�y4� term. Also, in the appendix we
have scaled out the x derivatives near the tip which should
become relatively small over time. However, as our numerics
are not steady state solutions, but merely long time solutions,
and as the x derivatives remain strong right near the edge of
the drop, we see the 1/4th power law cuts off just before the
tip.

IV. THE EFFECTS OF VAN DER WAALS FORCING

In this section we will analyze the effects of the van der
Waals term on the shape of the droplet. The relative strengths
and applications of the “retarded” and “nonretarded” van der
Waals interaction has been discussed in detail by French
�29�. The nonretarded part of the interaction is generally
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FIG. 7. A typical numerical cross section �taken at an x value of
about 80% of the total drop length� for a solution to Eq. �4� with
A=0 �top� and a typical experimental cross section �taken at a pos-
tion about 80% of the total drop length� at intermediate times fit to
a parabola. The experimental values �mm� for the height profile is
fitted with a parabola.

0

0.5

1

1.5

0 0.3 0.6 0.9

(ξT ξ)

η

1/4
α −

ξ

0

1

2

3

0 0.3 0.6 0.9 1.2

fo
ot

p
ri

n
t

w
id

th

ξ

∝ (ξT − ξ)b

FIG. 8. The top half ��0� of a numerical footprint from a solution of Eq. �4� under scaling �10� fit with a scaling constant of 1 /4th �top�
and an representative experimental footprint �volume 0.1 �l, viscosity 100 cSt� fit to a scaling function. As with all of the experimental runs
for an intermediate times where van der Waals forces are not yet important. The scaling constant �in this case b=0.23� was close to the
predicted value �1/4�.

RYAN P. HASKETT AND SHOMEEK MUKHOPADHYAY PHYSICAL REVIEW E 76, 026306 �2007�

026306-6



called the Hamakar constant. When the completely wetting
droplet thins, the tip can typically reach a height of less than
100 nm, which is typically in the range where retarded Ha-
maker constant will be effective. In fact, for horizontal drop-
lets ellipsometric measurements during the late stage of
spreading show an advancing “precursor” layer which is
about 30 nm in thickness �16�. In recent experiments on
spreading of PDMS on partially wetting substrates, for drop
volumes of about 100 nl there was a crossover from surface
tension to van der Waals spreading �17�. Extensive work on
crossover from “nonretarded” to “retarded” forces for liquids
on quartz systems have been analyzed by Teletzke et al. �30�.

To understand the effects of the van der Waals forcing we
turn to a change of variables suggested by the scaling in the
tip position x� t1/3. Since our motion is mostly one-
dimensional at long times, we choose to scale our spatial
variable � to keep the tip position constant. This change of
variables is a modified version of a scaling proposed by
Hocking �31�, from which we can numerically find a simi-
larity solution to our problem �see the Appendix� without the
van der Waals forcing. By moving into the scaling variables
from the similarity solution we can easily observe the
changes caused by the van der Waals term We then pick the
rest of our variables, � the transverse scale, s as our “long”
time variable, and � the scaled height, to asymptotically bal-
ance the governing equation in t.

� = t−1/3x ,

� = y ,

s = ln�t� ,

���,�,s� = t1/3h�x,y,t� . �10�

We apply this change of variables to the full governing equa-
tion with wetting 0�A�1 and obtain the following partial
differential equation for the scaled height �:

�s + ��3 − ��/3�� = Ae4s/3���

�
	

�

+ Ae2s/3���

�
	

�

− ��3������

− O�e−2s/3� . �11�

For very small A our solution will evolve into to the two-
dimensional solution �9� for intermediate times
�A exp�4s /3�=At4/3�1�, but it is clear from the scaling that
the van der Waals forces will eventually become dominant.
Importantly, the van der Waals forcing in the transverse di-
rection becomes important much earlier t�A−3/4 while the
x-direction term kicks in at t�A−3/2. From this scaling dif-
ference we expect to observe transverse spreading in the ex-
periments. Note the numerical footprints in Fig. 9 spread to
approximately the footprint of solution with A=0 but then
continue to spread in the transverse direction over longer
times. We see the same qualitative changes in the experimen-
tal footprint �Fig. 10� as well as a loss of the 1/4th scaling of
the width predicted in the Appendix.

The lateral spreading causes deviations in the shape of the
drop from the similarity solution without van der Waals
forces �9�. Through numerical solutions we observe the

transverse spreading slightly reduces the height of the profile
height from the values predicted by the similarity solution.
We also see the cross sections are no longer parabolic to

O�y6�
. These deviations are too small to observe in the ex-
periments. However, we can easily observe a reduction in the
speed at which the tip of the drop moves down the plane in
the unscaled variables as shown in �Fig. 11�. These devia-
tions from the similarity solution start at the correct time
scale A exp�4s /3�=At4/3�1. We can fit various data sets and
compared their deviation in the tip position from the scaling
law xt� t1/3. Using numerics with various values of A we can
find an approximate strength of the van der Waals forcing for
that experimental run as shown in Fig. 11.

However, in obtaining this value for the dimensionless
constant A we had to make many assumptions that could
significantly effect the final value. Some complications arise
in fitting stem from the undetermined constants in the solu-
tion �9�. As initial lateral spreading and mass distribution can
vary within the experiment, we choose to fit the data using
an effective volume instead of the measured volume. The
effects of the wetting height �which is unmeasurable�, are
even more significant as small changes in the wetting height
can have fairly large effects on the deviation seen and there-
fore the matching value for A. Also, the deviation is similar
for different functional forms for the van der Waals pressure

-2

-1

0

1

2

0 0.4 0.8 1.2

η

ξ

FIG. 9. Scaled numerical footprints of the droplet at various
long times for A=4�10−12. Note the solution starts near the A=0
similarity solution �solid� at intermediate times and we can see sig-
nificant shape change at increasingly long times �in the direction of
the arrows� due to van der Waals forces. Note that both axes are
nondimensionalized according to Sec. IV.
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η

ξ

FIG. 10. Scaled experimental footprints �100 cSt� at an interme-
diate time �1550 s, diamonds� and a relatively late time �14 500 s,
crosses� showing qualitatively the same transverse spread seen in
the above numerical runs.
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��h�. For the forms of the pressure tested in the numerics
���h�=1/h3, ��h�=1/h4, ��h�=C1 /h3+C2 /h4� we see very
similar qualitative results for the deviation from the 1/3rd
scaling law. In particular, we find that the van der Waals
forces are the contributing factor for the long time deviations
from the expected t1/3 scaling law for the tip position.

V. SUMMARY AND CONCLUSION

As noted earlier, the scaling exponents fit very well for
intermediate times, however, in our experiments as well as
the experiments of others the constants associated with these
scaling laws vary rather widely. Other authors �4,8,21� have
hypothesized that wetting effects contribute to this spread in
values. From Eq. �A8� in the Appendix, we can see a pos-
sible method for wetting effects to cause this spread. A
matching asymptotic solution near the back of the drop ��
=0� would almost certainly depend on the form and strength
of the wetting, as the height is very small even at intermedi-
ate times. This matched solution would determine the value
of W and therefore �from conservation of mass�, the �tip. So,
the van der Waals form could well affect the scaling con-
stants strongly even though they do not explicitly affect the
droplet shape for intermediate times.

The experimental and numerical evidence clearly points
to van der Waals forces as the cause of long time deviations
from classical solutions for the motion and shape of
microliter-sized, liquid droplets. While we derive a
asymptotic, series solution for the shape of a droplet without
van der Waals forces �9�, the solution could use a matching
asymptotic solution near the back of the drop. This would
likely give insight into into the spread in data seen in this
paper and others on droplet motion. Also, asymptotics for
small amounts of van der Waals forcing on this complete
solution could complete the understanding of the long-time
droplet shape changes. Measurements of the precursor
height, while not possible with current apparatus, could well
become possible in the near future. This would perhaps allow
close fitting of the dimensionless constant A and test the
correct form for the van der Waals pressure term.
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APPENDIX: APPROXIMATE SOLUTION FOR THE
DROPLET WITHOUT VAN DER WAALS FORCES

To understand the shape of the droplet we work in two
dimensions, we turn to our change of variables �10�. Our
governing equation �4� under this rescaling becomes

�s + ��3 − ��/3�� = − ��3������ + O�e−2s/3� . �A1�

Long-time numerical simulations to this equation, show a
single long time steady solution with gravitational forces �3

balancing the term produced by the shrinking of � scale in
time �Fig. 4 moved back to standard variables�. This solution
is independent of initial condition shape as long as the initial
droplet is reasonably concentrated �the initial width is less
then half of the final transverse width�. This condition was
not a concern as the initial droplet sizes in the experiments
were significantly smaller than the final droplet in width.

We start looking for an analytic, long-time form by re-
moving the time dependence �s=0. For our analysis, we call
�=�tip the steady-state tip position which will end up being
close but not quite the actual tip position as we will ignore
the capillary ridge seen in Fig. 2. We will define a new simi-

larity position variable �̄ as the scaled distance up the drop
from this point �=�tip.

�̄ = 1 −
�

�tip
.

In a study of fingering under gravity and surface tension
gradients, Witelski and Jayaraman �private communication�
introduce a mixed-spatial similarity variable they use to un-
derstand a balanced fourth-order smoothing perpendicular to
their driving forces. Since we also have a driving force per-
pendicular to our smoothing we use the same similarity vari-
able �̄ to modify our governing equation

�̄ =
�

�1 − �/�tip�� =
�

�̄�
. �A2�

The similarity constant � takes a particular importance as the
factor determining how the width of the droplet scales as a
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FIG. 11. A data set with viscosity 50 cSt �above� graphed with the closest fit numerical solution A=2�10−12±1�10−12 and wetting
height 6�10−5. A similar data set with viscosity 100 cSt �below�. Dots represent the experimental points which have been
nondimensionalized.
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function of the distance from the tip �Fig. 8�.
These new variables when put into the steady version of

�A1� with A=0 produce the following equation for �̄��̄ , �̄�
=��� ,��:

1

�̄4�
��̄3�̄�̄�̄�̄��̄ +

��̄

�tip�̄
��̄3��̄ −

��̄

3�̄
�1 − �̄��̄�̄

=
�

��̄
� 1

�tip
��̄3� −

1 − �̄

3
�̄	 �A3�

which appears quite daunting until we realize that we are

interested in small �̄�1 near the tip of the drop. In which
case, we can set our scaling constant �=1/4 and look at the

order O�1/ �̄� equation

��̄3�̄�̄�̄�̄��̄ +
1

4�tip
��̄3��̄ −

1

12
�̄�̄ = 0. �A4�

To find an approximate solution to this equation, we note
that the problem is symmetric about the line �=0 and look
for a series solution to the problem

�̄��̄,�̄� = f��̄��1 + w2�̄2 + w4�̄4 + ¯ � �A5�

from which we find that after collecting terms of order �̄0

that w4 must be 0. The full series solution for this equation
does not seem to have an closed-form explicit solution.
However, since the equation skips three orders between the
nonzero w2 and w6, we can hope to get a very reasonably
accurate solution using only the first two terms of the expan-
sion �w4=w6=w8= ¯ =0�. Plugging in this shortened expan-
sion into the full partial differential equation �A3� and col-
lecting terms of order �̄0 we obtain just the terms from the
right-hand side of that equation

�f��̄�3��̄ = �1 − �̄

3
f��̄�	

�̄

. �A6�

This equation can be integrated once in �, but we must set
the integration constant to zero to keep the solution from
becoming infinite as �→0. At this point we can just take the
real solution of the cubic

f��̄� =��tip�1 − �̄�
3

. �A7�

and find the form for the solution along the center line �
=0.

To get a value for w2 we would have to match this solu-
tion to an asymptotic solution near the base of the droplet
�where ��1� or perhaps multiple asymptotic solutions. As it
stands, efforts to produce such asymptotic solutions for the
remainder of the droplet have not been successful. However,
we can leave w2 as a fitting parameter such as �tip and fit
solutions to the numerics and the experiments. To make these
comparisons, we move back into the scaled variables

���,�;A = 0� =��

3
�1 −

�2

w2	 + O�y6� , �A8�

where w=W�1−� /�tip�1/4 and we have assumed from the nu-
merics w2 is negative and for convenience changed our fit-
ting constant to W=�
w2
. This series solution of 15 �to
O�y2�� is defined for −w������w��� and 0����tip and
the complete solution is defined to be zero elsewhere. When
this similarity solution is scaled back to the h�x ,y , t� vari-
ables using Eq. �10� we obtain the two-dimensional solution
�9� and its associated equation for the width of the droplet.
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